Welding Inspection

Welding is a material Joining Process used in making of Welds.

Welding is joining of two similar or dissimilar metal by application of heat /heating them to suitable temperatures, with or without the application of pressure or by the application of pressure alone and with or without the use of filler metal.

Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the work pieces.

Some of the best known welding methods include:

Shielded metal arc welding (SMAW) - also known as "stick welding", uses an electrode that has flux, the protectant for the puddle, around it. The electrode holder holds the electrode as it slowly melts away. Slag protects the weld puddle from atmospheric contamination.

Gas tungsten arc welding (GTAW) - also known as TIG (tungsten, inert gas), uses a non-consumable tungsten electrode to produce the weld. The weld area is protected from atmospheric contamination by an inert shielding gas such as Argon or Helium.

Gas metal arc welding (GMAW) - commonly termed MIG (metal, inert gas), uses a wire feeding gun that feeds wire at an adjustable speed and sprays an argon-based shielding gas or a mix of argon and carbon dioxide (CO2) over the weld puddle to protect it from atmospheric contamination.

Flux-cored arc welding (FCAW) - almost identical to MIG welding except it uses a special tubular wire filled with flux; it can be used with or without shielding gas, depending on the filler.

Submerged arc welding (SAW) - uses an automatically fed consumable electrode and a blanket of granular fusible flux. The molten weld and the arc zone are protected from atmospheric contamination by being "submerged" under the flux blanket.

Electroslag welding (ESW) - a highly productive, single pass welding process for thicker materials between 1 inch (25 mm) and 12 inches (300 mm) in a vertical or close to vertical position.

Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding may be performed in many different environments, including in open air, under water, and in outer space. Welding is a hazardous undertaking and precautions are required to avoid burns, electric shock, vision damage, inhalation of poisonous gases and fumes, and exposure to intense ultraviolet radiation.

Welding Inspection Technology training & Certified Welding Inspector (CWI) Examination program.

About American Welding Society (AWS)

AWS Certified Welding Inspector (CWI)

AWS Senior Certified Welding Inspector (SCWI)




GTAW Gas Tungsten Arc Welding

TIG Welding

Tungsten Inert Gas (TIG) or Gas Tungsten Arc (GTA) welding is the arc welding process in which arc is generated between non consumable tungsten electrode and workpiece. The tungsten electrode and the weld pool are shielded by an inert gas normally argon and helium. Figures 10.1 & 10.2 show the principle of tungsten inert gas welding process.



The tungsten arc process is being employed widely for the precision joining of critical components which require controlled heat input. The small intense heat source provided by the tungsten arc is ideally suited to the controlled melting of the material. Since the electrode is not consumed during the process, as with the MIG or MMA welding processes, welding without filler material can be done without the need for continual compromise between the heat input from the arc and the melting of the filler metal. As the filler metal, when required, can be added directly to the weld pool from a separate wire feed system or manually, all aspects of the process can be precisely and independently controlled i.e. the degree of melting of the parent metal is determined by the welding current with respect to the welding speed, whilst the degree of weld bead reinforcement is determined by the rate at which the filler wire is added to the weld pool.

In TIG torch the electrode is extended beyond the shielding gas nozzle. The arc is ignited by high voltage, high frequency (HF) pulses, or by touching the electrode to the workpiece and withdrawing to initiate the arc at a preset level of current.

Selection of electrode composition and size is not completely independent and must be considered in relation to the operating mode and the current level. Electrodes for DC welding are pure tungsten or tungsten with 1 or 2% thoria, the thoria being added to improve electron emission which facilitates easy arc ignition. In AC welding, where the electrode must operate at a higher temperature, a pure tungsten or tungsten-zirconia electrode is preferred as the rate of tungsten loss is somewhat lesser than with thoriated electrodes and the zirconia aids retention of the ‘balled' tip.

Table 10.1 gives chemical composition of tungsten electrodes as per American Welding Society (AWS) classification.

AWS Classification Tungsten, min. percent Thoria, percent Zirconia, percent Total other elements, max. percent
EWP 99.5 - - 0.5
EWTh-1 98.5 0.8 to 1.2 - 0.5
EWTh-2 97.5 1.7 to 2.2 - 0.5
EWZr 99.2 - 0.15 to 0.40 0.5


Tungsten electrodes are commonly available from 0.5 mm to 6.4 mm diameter and 150 - 200 mm length. The current carrying capacity of each size of electrode depends on whether it is connected to negative or positive terminal of DC power source. AC is used only in case of welding of aluminum and magnesium and their alloys. Table 10.2 gives typical current ranges for TIG electrodes when electrode is connected to negative terminal (DCEN) or to positive terminal (DCEP).

Electrode Dia. (mm) DCEN DCEP
Pure and Thoriated Tungsten Pure and Thoriated Tungsten
0.5 5-20 -
1.0 15-80 -
1.6 70-150 10-20
2.4 150-250 15-30
3.2 250-400 25-40
4.0 400-500 40-55
4.8 500-750 55-80
6.4 750-1000 80-125

The power source required to maintain the TIG arc has a drooping or constant current characteristic which provides an essentially constant current output when the arc length is varied over several millimeters. Hence, the natural variations in the arc length which occur in manual welding have little effect on welding current. The capacity to limit the current to the set value is equally crucial when the electrode is short circuited to the workpiece, otherwise excessively high current shall flow, damaging the electrode. Open circuit voltage of power source ranges from 60 to 80 V.

Argon or helium may be used successfully for most applications, with the possible exception of the welding of extremely thin material for which argon is essential. Argon generally provides an arc which operates more smoothly and quietly, is handled more easily and is less penetrating than the arc obtained by the use of helium. For these reasons argon is usually preferred for most applications, except where the higher heat and penetration characteristic of helium is required for welding metals of high heat conductivity in larger thicknesses. Aluminum and copper are metals of high heat conductivity and are examples of the type of material for which helium is advantageous in welding relatively thick sections.

Pure argon can be used for welding of structural steels, low alloyed steels, stainless steels, aluminum, copper, titanium and magnesium. Argon hydrogen mixture is used for welding of some grades of stainless steels and nickel alloys. Pure helium may be used for aluminum and copper. Helium argon mixtures may be used for low alloy steels, aluminum and copper.

TIG welding can be used in all positions. It is normally used for root pass(es) during welding of thick pipes but is widely being used for welding of thin walled pipes and tubes. This process can be easily mechanised i.e. movement of torch and feeding of filler wire, so it can be used for precision welding in nuclear, aircraft, chemical, petroleum, automobile and space craft industries. Aircraft frames and its skin, rocket body and engine casing are few examples where TIG welding is very popular.


SMAW Shilded Metal Arc Welding

Shielded Metal Arc Welding - SMAW

The manual Metal Arc Process


Shielded metal arc welding (SMAW), or manual metal arc welding was first invented in Russia in 1888.

It involved a bare metal rod with no flux coating to give a protective gas shield. The development of coated electrodes did not occur until the early 1900s when the Kjellberg process was invented in Sweden and the Quasi-arc method was introduced in the UK.

It is worth noting that coated electrodes were slow to be adopted because of their high cost. However, it was inevitable that as the demand for sound welds grew, manual metal arc became synonymous with coated electrodes.

When an arc is struck between the metal rod (electrode) and the workpiece, both the rod and workpiece surface melt to form a weld pool. Simultaneous melting of the flux coating on the rod will form gas and slag which protects the weld pool from the surrounding atmosphere.

The slag will solidify and cool and must be chipped off the weld bead once the weld run is complete (or before the next weld pass is deposited).

The process allows only short lengths of weld to be produced before a new electrode needs to be inserted in the holder. Weld penetration is low and the quality of the weld deposit is highly dependent on the skill of the welder

Types of Flux/Electrodes

Arc stability, depth of penetration, metal deposition rate and positional capability are greatly influenced by the chemical composition of the flux coating on the electrode. Electrodes can be divided into three main groups:

  • Cellulosic
  • Rutile
  • Basic

Cellulosic electrodes contain a high proportion of cellulose in the coating and are characterised by a deeply penetrating arc and a rapid burn-off rate giving high welding speeds. Weld deposit can be coarse and with fluid slag, deslagging can be difficult. These electrodes are easy to use in any position and are noted for their use in the "stovepipe" welding technique.

Features:

  • deep penetration in all positions
  • suitability for vertical down welding
  • reasonably good mechanical properties
  • high level of hydrogen generated - risk of cracking in the heat affected zone (HAZ)
  • Rutile electrodes contain a high proportion of titanium oxide (rutile) in the coating. Titanium oxide promotes easy arc ignition, smooth arc operation and low spatter. These electrodes are general purpose electrodes with good welding properties. They can be used with AC and DC power sources and in all positions. The electrodes are especially suitable for welding fillet joints in the horizontal/vertical (H/V) position.

    Features:

    • moderate weld metal mechanical properties
    • good bead profile produced through the viscous slag
    • positional welding possible with a fluid slag (containing fluoride)
    • easily removable slag

    Basic electrodes contain a high proportion of calcium carbonate (limestone) and calcium fluoride (fluorspar) in the coating. This makes their slag coating more fluid than rutile coatings - this is also fast-freezing which assists welding in the vertical and overhead position. These electrodes are used for welding medium and heavy section fabrications where higher weld quality, good mechanical properties and resistance to cracking (due to high restraint) are required.

    Features:

    • low hydrogen weld metal
    • requires high welding currents/speeds
    • poor bead profile (convex and coarse surface profile)
    • slag removal difficult

    Metal powder electrodes contain an addition of metal powder to the flux coating to increase the maximum permissible welding current level. Thus, for a given electrode size, the metal deposition rate and efficiency (percentage of the metal deposited) are increased compared with an electrode containing no iron powder in the coating. The slag is normally easily removed. Iron powder electrodes are mainly used in the flat and H/V positions to take advantage of the higher deposition rates. Efficiencies as high as 130 to 140% can be achieved for rutile and basic electrodes without marked deterioration of the arcing characteristics but the arc tends to be less forceful which reduces bead penetration.

    Power Source

    Electrodes can be operated with AC and DC power supplies. Not all DC electrodes can be operated on AC power sources, however AC electrodes are normally used on DC.

    Welding Current

    Welding current level is determined by the size of electrode - the normal operating range and current are recommended by manufacturers. Typical operating ranges for a selection of electrode sizes are illustrated in the table. As a rule of thumb when selecting a suitable current level, an electrode will require about 40A per millimetre (diameter). Therefore, the preferred current level for a 4mm diameter electrode would be 160A, but the acceptable operating range is 140 to 180A.


    What's new?

    Transistor (inverter) technology is now enabling very small and comparatively low weight power sources to be produced. These power sources are finding increasing use for site welding where they can be readily transported from job to job. As they are electronically controlled, add-on units are available for TIG and MIG welding which increase the flexibility. Electrodes are now available in hermetically sealed containers. These vacuum packs obviate the need for baking the electrodes immediately prior to use. However, if a container has been opened or damaged, it is essential that the electrodes are redried the manufacturer's instructions.