Vibration Analysis (VA)

Vibration analysis refers to the process of monitoring the vibration signatures specific to a piece of rotating machinery and analyzing that information to determine the condition of that equipment. Three types of sensors are commonly used: displacement sensors, velocity sensors and accelerometers.

Displacement sensors uses eddy current to detect vertical and/or horizontal motion (depending on whether one or two sensors are used) and are well suited to detect shaft motion and changes in clearance tolerances.

Basic velocity sensors use a spring-mounted magnet that moves through a coil of wire, with the outer case of the sensor attached to the part being inspected. The coil of wire moves through the magnetic field, generating an electrical signal that is sent back to a receiver and recorded for analysis. Newer model vibration sensors use time-of-flight technology and improved analysis software. Velocity sensors are commonly used in handheld sensors


Basic accelerometers use a piezoelectric crystal (that converts sound waves to electrical impulses and back) attached to a mass that vibrates due to the motion of the part to which the sensor casing is attached. As the mass and crystal vibrate, a low voltage current is generated which is passed through a pre-amplifier and sent to the recording device. Accelerometers are very effective for detecting the high frequencies created by high speed turbine blades, gears and ball and roller bearings that travel at much greater speeds than the shafts to which they are attached.